
Umple Tutorial: Models 2020

Timothy C. Lethbridge, I.S.P, P.Eng.
University of Ottawa, Canada

Timothy.Lethbridge@ uottawa.ca

http://www.umple.org

http://www.umple.org

Umple: Simple, Ample,
UML Programming Language

Open source textual modeling tool and code generator
• Adds modeling to Java,. C++, PHP
• A sample of features

—Referential integrity on associations
—Code generation for patterns
—Blending of conventional code with models
—Infinitely nested state machines, with concurrency
—Separation of concerns for models: mixins, traits, mixsets, aspects

Tools
• Command line compiler
• Web-based tool (UmpleOnline) for demos and education
• Plugins for Eclipse and other tools

Models T3 Tutorial: Umple - October 2020 2

What Are we Going to Learn About in This
Tutorial? What Will You Be Able To Do?

• Modeling using class diagrams
—Attributes, Associations, Methods, Patterns, Constraints

• Modeling using state diagrams
—States, Events, Transitions, Guards, Nesting, Actions, Activities
—Concurrency

• Separation of Concerns in Models
—Mixins, Traits, Aspects, Mixsets

• Practice with a examples focusing on state machines and product lines

• Building a complete system in Umple

Models T3 Tutorial: Umple - October 2020 3

What Technology Will You Need?

As a minimum: Any web browser.

For a richer command-line experience
• A computer (laptop) with Java 8-14 JDK
• Mac and Linux are the easiest platforms, but Windows

also will work
• Download Umple Jar at http://dl.umple.org

You can also run Umple in Docker: http://docker.umple.org

Models T3 Tutorial: Umple - October 2020 4

http://dl.umple.org/
http://docker.umple.org/

Key Websites

Entry-point: https://www.umple.org

Github: https://github.com/umple/umple

Umple Online: https://try.umple.org

Models T3 Tutorial: Umple - October 2020 5

https://www.umple.org/
https://github.com/umple/umple
https://try.umple.org/

Tell Me About Yourselves:

Quick survey about
• What modeling tools do you use?
• Whether you are an academic, industrial practitioner or

student
• Whether you generate code

https://www.surveymonkey.ca/r/J96KPBN

Some lists of tools:
• https://www.guru99.com/best-uml-tools.html
• https://modeling-languages.com/uml-tools/

Models T3 Tutorial: Umple - October 2020 6

https://www.surveymonkey.ca/r/J96KPBN
https://www.guru99.com/best-uml-tools.html
https://modeling-languages.com/uml-tools/

The User Manual and Hello World

Go to http://helloworld.umple.org

Look at the first example
• Observe: just a plain method

Models T3 Tutorial: Umple - October 2020 7

http://helloworld.umple.org/

Exercise: Compiling and Changing a Model

Look at the example at the bottom of
http://helloworld.umple.org (also on next slide)

• Observe: attribute, association, class hierarchy, mixin

Click on Load the above code into UmpleOnline
• Observe and modify the diagram
• Add an attribute
• Make a multiplicity error, then undo
• Generate code and take a look
• Download, compile and run (Follow as I show you how)

Models T3 Tutorial: Umple - October 2020 8

http://helloworld.umple.org/

Demo of Compiling on the Command Line - 1
To compile on the command line you need Java 8 or higher

Download umple.jar from http://dl.umple.org
Suggestions in Mac/Linux
• put it in a directory tmp
• alias umple='java -jar ~/tmp/umple.jar'

Models T3 Tutorial: Umple - October 2020 9

http://dl.umple.org/

Demo of Compiling on the Command Line - 2
Basic compilation
•java -jar umple.jar test.ump
•umple test.ump

•umple --help

To generate and compile the java to a final system
•umple model.ump -c –

Use control-o and then paste into a terminal to copy any text
from UmpleOnline and compile it to java on your machin

• Example on next slide

Models T3 Tutorial: Umple - October 2020 10

Hello World Example 2 in the User Manual

Models T3 Tutorial: Umple - October 2020 11

Hello World Example 2 in UmpleOnline

Models T3 Tutorial: Umple - October 2020 12

Exploration of UmpleOnline
Explore class diagram examples

Explore options
• View – hide and showing text, diagram

—Control-t (text), control-d (diagram) as shortcuts
• View – hide and showing methods, attributes
• Generate different default diagram types

—Control-g (Graphviz), control-s (state), control-e

Generate code and look at the results
• In Umple you never should modify generated code, but it

is designed to be readable for education and certification

Models T3 Tutorial: Umple - October 2020 13

Walkthrough of parts of the User Manual

https://manual.umple.org

Note in particular
• Key sections: attributes, associations, state machines
• Grammar
• Generated API
• Errors and warnings
• Editing pages in Github

Models T3 Tutorial: Umple - October 2020 14

https://manual.umple.org/

Attributes

As in UML, more abstract than instance variables

• Always private by default
• Should only be accessed get, set methods

• Can be stereotyped (upcoming slides) to affect code
generation

• Can have aspects applied (discussed later)

• Can be constrained (discussed later)

Models T3 Tutorial: Umple - October 2020 15

Umple Builtin Datatypes
String // (default if none specified)

Integer
Float
Double
Boolean

Time
Date

The above will generate appropriate code in Java, C++ etc.
• e.g. Integer becomes int

Other (native) types can be used but without guaranteed
correctness

Models T3 Tutorial: Umple - October 2020 16

Some Stereotypes Used on Attributes
By default, each attribute adds an argument to the

generated constructor
To prevent this, use one of these

autounique x; // sets attribute to 1, 2, 3 …

lazy b; // sets it to null, 0, “” depending on type

a = "init value";

defaulted s = "def"; // resettable to the default

internal i; // doesn’t generate any get/set method

More more details: http://attributes.umple.org

Models T3 Tutorial: Umple - October 2020 17

http://attributes.umple.org/

Immutability
Useful for objects where you want to enforce no possible

change of values after an object instance created
• e.g. a geometric point

Generate a constructor argument and get method but no
set method
immutable String str;

The following ensures constructor argument, but allows
setting just once.
lazy immutable z;

Models T3 Tutorial: Umple - October 2020 18

Generalization in Umple

Umple uses the isA keyword to indicate generalization
• Used to indicate superclass, used trait, implemented

interface

class Shape {

colour;
}
class Rectangle {

isA Shape;
}

Models T3 Tutorial: Umple - October 2020 19

Interfaces
Declare signatures of a group of methods that must be

implemented by various classes

Also declared using the keyword isA

Standard UML concept; the same concept as in Java

Models T3 Tutorial: Umple - October 2020 20

User-Written Methods in Umple

Methods can be added to any Umple code.

Umple parses the signature only; the rest is passed to the
generated code.

You can specify different bodies in different languages

We will look at examples in the user manual …

Models T3 Tutorial: Umple - October 2020 21

Associations in Umple

class Employee {

id;
firstName;
lastName;

}

class Company {
name;

1 -- * Employee;
}

Models T3 Tutorial: Umple - October 2020 22

Referential Integrity

When an instance on one side of the association changes
• The linked instances on the other side know …
• And vice-versa

This is standard in Umple associations, which are
bidirectional

Models T3 Tutorial: Umple - October 2020 23

Role Names (optional, in most cases)
Allow you to better label either end of an association

class Person{
id;
firstName;

lastName;
}

class Company {

name;
1 employer -- * Person employee;

}

Models T3 Tutorial: Umple - October 2020 24

Models T3 Tutorial: Umple - October 2020 25

Many-to-Many Associations

*
supervisor

*****1..*Assistant Manager

Open in Umple

http://try.umple.org/?text=class%20Assistant%20%7b%7d%0a%0aclass%20Manager%20%7b%0a%20%201..*%20supervisor%20--%20*%20Assistant;%0a%7d//$?%5bEnd_of_model%5d$?%0a%0aclass%20Assistant%0a%7b%0a%20%20position%2049%2030%20109%2045;%0a%7d%0a%0aclass%20Manager%0a%7b%0a%20%20position%2073%20127%20109%2045;%0a%7d

Models T3 Tutorial: Umple - October 2020 26

One-to-One Associations (Use Cautiously)

Company BoardOfDirectors11

Open in Umple

http://try.umple.org/?text=class%20Company%20%7b%7d%0aclass%20BoardOfDirectors%20%7b%7d%0a%0aassociation%20%7b%0a%20%201%20Company%20--%201%20BoardOfDirectors;%0a%7d//$?%5bEnd_of_model%5d$?%0a%0aclass%20Company%0a%7b%0a%20%20position%2050%2030%20109%2045;%0a%7d%0a%0aclass%20BoardOfDirectors%0a%7b%0a%20%20position%2050%20130%20109%2045;%0a%7d

Models T3 Tutorial: Umple - October 2020 27

Unidirectional Associations
Associations are by default bi-directional

Limit the navigability direction of an association by adding an
arrow at one end

In the following unidirectional association
— A Day knows about its notes, but a Note does not know
which Day is belongs to
—Note remains ‘uncoupled’ and can be used in other contexts

class Day {
* -> 1 Note;

}

class Note {} Open in Umple

http://try.umple.org/?text=class%20Day%20%7b%0a%20%20*%20-%3e%201%20Note;%0a%7d%0a%0aclass%20Note%20%7b%7d//$?%5bEnd_of_model%5d$?%0a%0aclass%20Day%0a%7b%0a%20%20position%2050%2031%20109%2045;%0a%20%20position.association%20Day__Note%2030,46%2030,0;%0a%7d%0a%0aclass%20Note%0a%7b%0a%20%20position%2050%20131%20109%2045;%0a%7d

Models T3 Tutorial: Umple - October 2020 28

Association Classes
Sometimes, an attribute that concerns two associated classes

cannot be placed in either of the classes

The following are nearly equivalent
• The only difference:

—in the association class there can be only a single
registration of a given Student in a CourseSection

Open in Umple and extended example

http://try.umple.org/?text=class%20Student%20%7b%7d%0aclass%20CourseSection%20%7b%7d%0aclass%20Registration%20%7b%0a%20%20*%20--%201%20Student;%0a%20%20*%20--%201%20CourseSection;%0a%7d//$?%5bEnd_of_model%5d$?%0a%0aclass%20Student%0a%7b%0a%20%20position%2050%2030%20109%2045;%0a%7d%0a%0aclass%20CourseSection%0a%7b%0a%20%20position%2097%20203%20109%2045;%0a%7d%0a%0aclass%20Registration%0a%7b%0a%20%20position%2067%20123%20109%2045;%0a%20%20position.association%20CourseSection__Registration%2084,45%2029,0;%0a%7d
http://try.umple.org/?text=class%20Student%20%7b%7dclass%20CourseSection%20%7b%7dclass%20Registration%20%7b%20%20*%20--%201%20Student;%20%20*%20--%201%20CourseSection;%7d//$?%5bEnd_of_model%5d$?class%20Student%7b%20%20position%2050%2030%20109%2045;%7dclass%20CourseSection%7b%20%20position%2097%20203%20109%2045;%7dclass%20Registration%7b%20%20position%2067%20123%20109%2045;%20%20position.association%20CourseSection__Registration%2084,45%2029,0;%7d
http://try.umple.org/?text=class%20Student%20%7b%7d%0aclass%20CourseSection%20%7b%7d%0aclass%20Registration%20%7b%0a%20%20*%20--%201%20Student;%0a%20%20*%20--%201%20CourseSection;%0a%7d//$?%5bEnd_of_model%5d$?%0a%0aclass%20Student%0a%7b%0a%20%20position%2050%2030%20109%2045;%0a%7d%0a%0aclass%20CourseSection%0a%7b%0a%20%20position%2097%20203%20109%2045;%0a%7d%0a%0aclass%20Registration%0a%7b%0a%20%20position%2067%20123%20109%2045;%0a%20%20position.association%20CourseSection__Registration%2084,45%2029,0;%0a%7d
http://tinyurl.com/3j4r3mp

Models T3 Tutorial: Umple - October 2020 29

Association Classes (cont.)
Umple code

class Student {}
class CourseSection {}
associationClass Registration {
* Student;
* CourseSection;

}

Open in UmpleOnline, and then generate code

Models T3 Tutorial: Umple - October 2020 30

Reflexive Associations
An association that connects a class to itself

class Course {
* self isMutuallyExclusiveWith; // Symmetric

}

association {
* Course successor -- * Course prerequisite;

} Open in Umple

http://try.umple.org/?text=class%20Course%20%7b%20%20%20*%20self%20isMutuallyExclusiveWith;%7dassociation%20%7b%20%20%20%20%20*%20Course%20successor%20--%20*%20Course%20prerequisite;%7d//$?%5bEnd_of_model%5d$?class%20Course%7b%20%20position%20122%2025%20109%2045;%7d

Singleton Pattern

Standard pattern to enable only a single instance of a class
to be created.

• private constructor
• getInstance() method

Declaring in Umple

class University {
singleton;
name;

}

Models T3 Tutorial: Umple - October 2020 31

Delegation Pattern

A class calls a method in its ‘neighbour’

class RegularFlight {
flightNumber;

}

Class SpecificFlight {
* -- 1 RegularFlight;
flightNumber = {getRegularFlight().getFullNumber()}

}

Full details of this example in the user manual

Models T3 Tutorial: Umple - October 2020 32

Basic Constraints

Shown in square brackets
• Code is added to the constructor and the set method

class X {
Integer i;
[! (i == 10)]

}

We will see constraints in state machines (as guards)

Models T3 Tutorial: Umple - October 2020 33

Models T3 Tutorial: Umple - October 2020 34

Basics of State Machines

• At any given point in time, the system is in one state.

• It will remain in this state until an event occurs that
causes it to change state.

• Standard UML notation and semantics

State Machine with tracing:
Phone and Lines example in UmpleOnline

Models T3 Tutorial: Umple - October 2020 35

Do Activities and Concurrency

A do activity executes
• In a separate thread
• Until

—Its method terminates, or
—The state needs to exit (killing the tread)

Example uses:
• Outputting a stream (e.g. playing music)
• Monitoring something
• Running a motor while in the state
• Achieving concurrency, using multiple do activities

Models T3 Tutorial: Umple - October 2020 36

Active Objects

These start in a separate thread as they are instantiated.
• Implemented as syntactic sugar for having a state

machine with a single state with a do activity

Declared with the keyword

active

See the user manual for an example

Models T3 Tutorial: Umple - October 2020 37

State Tables and Simulations

Allow analysis of state machines statically without having to
write code

We will explore these in UmpleOnline by looking at state
machine examples and generating tables and
simulations

Models T3 Tutorial: Umple - October 2020 38

Default Threading in State Machines

As discussed so far, basic code generated for state
machines has the following behaviour:

• A single thread:
—Calls an event
—Executes the event (running any actions)
—Returns to the caller and continues

This has two problems:
1. If another thread calls the event at the same time they

will ‘interfere’
2. There can be deadlocks if an action itself triggers an

event
Models T3 Tutorial: Umple - October 2020 39

Queued State Machines

The ‘queued’ stereotype solves the threading problem:
• Callers can add events to a queue without blocking
• A separate thread takes items off the queue ‘as fast as it

can’ and processes them

Umple syntax: queued before the state machine
declaration

We will look at an examples in the manual

Models T3 Tutorial: Umple - October 2020 40

Pooled State Machines

Default Umple Behavior (including with queued):
• If an event is received but the system is not in a state that

can handle it, then the event is ignored.

Alternative pooled stereotype:
• Uses a queue (see previous slide)
• Events that cannot be processed in the current state are

left at the head of the queue until a relevant state reached
• The first relevant event nearest the head of the queue is

processed
• Events may hence be processed out of order, but not

ignored
Models T3 Tutorial: Umple - October 2020 41

Unspecified Pseudo-Event

Matches any event that is not listed

Can be in any state, e.g.
•unspecified -> error;

Models T3 Tutorial: Umple - October 2020 42

Example using unspecified
class AutomatedTellerMachine{

queued sm {
idle {

cardInserted -> active; maintain -> maintenance;
unspecified -> error1;

}
maintenance { isMaintained -> idle; }

active {
entry /{addLog("Card is read");}

exit /{addLog("Card is ejected");}
validating {

validated -> selecting;
unspecified -> error2;

}
selecting {select -> processing; }

processing {
selectAnotherTransiction -> selecting;
finish -> printing;

}
printing {receiptPrinted -> idle;}

cancel -> idle;
}

error1 {entry / {printError1();} ->idle;}
error2 {entry / {printError2();} ->validating;}

}
}

Models T3 Tutorial: Umple - October 2020 43

Model-Based Template Generation of Text

Allow output of complex text in any class
• Can generate XML, html, code, UI, etc.

Template for exactly the content
•textToOutout <<!output this!>>

Expression
•<<=someCode();>>

Internal logic within a template
•<<# if(a==0){#>> … <<#}#>>

Models T3 Tutorial: Umple - October 2020 44

Template Generation - Continued

We will look at examples in the in the User Manual
• Simple multiplication table
• Form letter

Models T3 Tutorial: Umple - October 2020 45

Mixins: Motivation

Product variants have long been important for
—Product lines/families, whose members target

different:
- hardware, OS, feature sets, basic/pro versions

—Feature-oriented development (separation of
concerns

Models T3 Tutorial: Umple - October 2020 46

Separation of Concerns by Mixins in Umple
Mixins allow incremental addition to a class of attributes,

associations, state machines, and any other feature
Example:

class X { a; }
class X { b; }

• The result would be a class with both a and b.

It doesn’t matter whether the mixins are
• Both in the same file
• One in one file, that includes the other in another file
• In two separate files, with a third file invoking them

Models T3 Tutorial: Umple - October 2020 47

Typical Ways of Using Mixins

Separate groups of classes for
• model (classes, attributes, associations)
• Methods operating on the model

Allows a clearer view of the core model

Another possibility
• One feature per file

Models T3 Tutorial: Umple - October 2020 48

Advantages and Disadvantages of Mixins

Advantages:
• Smaller files that are easier to understand
• Possibility to define variants and product lines:

—Different versions of a class for different software
versions (e.g. a professional version)

Disadvantage
• Delocalization:

—Bits of functionality of a class in different files
—The developer may not know that a mixin exists

unless a tool helps show this

Models T3 Tutorial: Umple - October 2020 49

Aspects: Motivation

We often don’t quite like the code as generated

Or

We want to do a little more than what the generated code
does

Or

We want to inject some feature (e.g. security checks) into
many places of generated or custom code

Models T3 Tutorial: Umple - October 2020 50

Aspects: General concepts

Create a pointcut that specifies (advises) where to inject
code at multiple points elsewhere in a system

• The pointcut uses a pattern to match where to inject
• Pieces of code that would otherwise be scattered are

thus gathered into the aspect

But: There is potentially acute sensitivity to change
• If the code changes the aspect may need to change
• Yet without tool support, developers wouldn’t know this

Drawback: Delocalization even stronger than for mixins

Models T3 Tutorial: Umple - October 2020 51

Aspect Orientation in Umple
It is common to limit a pointcuts a single class

• Inject code before, after, or around execution of custom or
generated methods and constructors

class Person {

name;

before setName {
if (aName != null && aName.length() > 20) { return false;
}

}
}

We have found these limited aspects nonetheless solve key
problems

Models T3 Tutorial: Umple - October 2020 52

Traits: Motivation

We may want to inject similar elements into unrelated
classes without complex multiple inheritance

• Elements can be
—Methods
—Attributes
—Associations
—States or state machines
—.. Anything

Models T3 Tutorial: Umple - October 2020 53

Separation of Concerns by Traits
Allow modeling elements to be made available in multiple

classes

trait Identifiable {
firstName;
lastName;
address;
phoneNumber;
fullName = {firstName + " " + lastName}
Boolean isLongName() {return lastName.length() > 1;}

}

class Person {
isA Identifiable;

}

See more complete version of this in the user manual

Models T3 Tutorial: Umple - October 2020 54

Another Trait Example
trait T1{

abstract void method1(); /* required method */
abstract void method2();
void method4(){/*implementation – provided method*/ }

}

trait T2{
isA T1;
void method3();
void method1(){/*implementation*/ }
void method2(){/*implementation*/ }

}

class C1{

void method3(){/*implementation*/ }
}

class C2{ isA C1; isA T2;
void method2(){/*implementation*/ }

}

Models T3 Tutorial: Umple - October 2020 55

Traits With Parameters
trait T1< TP isA I1 > {

abstract TP method2(TP data);
String method3(TP data){ /*implementation*/ }

}
interface I1{

void method1();

}
class C1{ isA I1;

isA T1<TP = C1>;
void method1(){/*implementation*/}
C1 method2(C1 data){ /*implementation*/ }

}
class C2{

isA I1;
isA T1< TP = C2 >;
void method1(){/*implementation*/}
C2 method2(C2 data){ /*implementation*/ }

}

Models T3 Tutorial: Umple - October 2020 56

Trait Parameters in Methods

trait T1 <TP>{
String method1();
String method2(){

#TP# instance = new #TP#();
return method1() +":"+instance.process();

}
}

class C1{

String process(){/*implementation*/}
}

class C2{

isA T1< TP = C1 >;
String method1(){/*implementation*/ }

}

Models T3 Tutorial: Umple - October 2020 57

Selecting Subsets of Items in Traits
trait T1{

abstract method1();
void method2(){/*implementation*/}

void method3(){/*implementation*/}

void method4(){/*implementation*/}

void method5(){/*implementation*/}
}

class C1{

isA T1<-method2() , -method3()>;
void method1() {/*implementation related to C1*/}

}

class C2{

isA T1<+method5()>;
void method1() {

/*implementation related to C2*/}

}

Models T3 Tutorial: Umple - October 2020 58

Renaming Elements when Using Traits
trait T1{

abstract method1();
void method2(){/*implementation*/}

void method3(){/*implementation*/}
void method4(){/*implementation*/}

void method5(Integer data){/* implementation*/}

}
class C1{

isA T1< method2() as function2 >;
void method1() {/*implementation related to C1*/}

}
class C2{

isA T1< method3() as private function3 >;
void method1() {/*implementation related to C2*/}

}

class C3{
isA T1< +method5(Integer) as function5 >;
void method1() {/*implementation related to C3*/}

}

Models T3 Tutorial: Umple - October 2020 59

Associations in Traits: Observer Pattern

class Dashboard{
void update (Sensor sensor){ /*implementation*/ }

}
class Sensor{
isA Subject< Observer = Dashboard >;

}
trait Subject <Observer>{
0..1 -> * Observer;
void notifyObservers() { /*implementation*/ }

}

Models T3 Tutorial: Umple - October 2020 60

Using Traits to Reuse State Machines
trait T1 {

sm1{
s0 {e1-> s1;}

s1 {e0-> s0;}

}

}
trait T2 {

isA T1;
sm2{

s0 {e1-> s1;}

s1 {e0-> s0;}

}

}
class C1 {

isA T2;
}

Models T3 Tutorial: Umple - October 2020 61

Satisfaction of Required Methods Through
State Machines
trait T1{

Boolean m1(String input);
Boolean m2();
sm1{

s1{
e1(String data) -> /{ m1(data); } s2; }

s2{

e2 -> /{ m2(); } s1; }
}

}
class C1{

isA T1;
sm2{

s1{ m1(String str) -> s2;}
s2{ m2 -> s1;}

}
}

Models T3 Tutorial: Umple - October 2020 62

Changing Name of a State Machine Region

trait T1{
sm {

s1{

r1{ e1-> r11; }

r11{}

||
r2{ e2-> r21; }

r21{}

}
}

}

class C1{

isA T1<sm.s1.r1 as region1,sm.s1.r2 as region2>;
}

Models T3 Tutorial: Umple - October 2020 63

Changing the Name of an Event

trait T1 {
sm1{

s0 { e1(Integer index)-> s1;}

s1 {e0-> s0;}

}

sm2{
t0 {e1(Integer index)-> t1;}

t1 {e0-> t0;}

}
}

class C1 {

isA T1<sm1.e1(Integer) as event1, *.e0() as event0>;
}

Models T3 Tutorial: Umple - October 2020 64

Mixins and Traits together

• Examples of mixins and traits combined in the user manual:

—Mixins with traits:
- https://cruise.umple.org/umple/TraitsandUmpleMixins.html

Models T3 Tutorial: Umple - October 2020 65

https://cruise.umple.org/umple/TraitsandUmpleMixins.html

Mixsets: Motivations
A feature or variant needs to inject or alter code in many

places
• Historically tools like the C Preprocessor were used
• Now tools like “Pure: Variants”

There is also a need to
• Enable model variants in a very straightforward way
• Blend variants with code/models in core compilers

—With harmonious syntax + analysable semantics
—Without the need for tools external to the compiler

Models T3 Tutorial: Umple - October 2020 66

Mixsets: Top-Level Syntax

Mixsets are named sets of mixins
mixset Name {
// Anything valid in Umple at top level

}

The following syntactic sugar works for top level elements
(class, trait, interface, association, etc.)

mixset Name class Classname {
}

Models T3 Tutorial: Umple - October 2020 67

Use Statements
A use statement specifies inclusion of either

• A file, or
• A mixset
use Name;

A mixset is conceptually a virtual file that is composed of a
set of model/code elements

The use statement for a mixset can appear
• Before, after or among the definition of the mixset parts
• In another mixset
• On the command line to generate a variant

Models T3 Tutorial: Umple - October 2020 68

Mixsets and Mixins: Synergies
• The blocks defined by a mixset are mixins
• Mixsets themselves can be composed using mixins

—e.g.

mixset Name1 {class X { a; } }

And somewhere else
mixset Name1 {class X { b; } }
use Name1;

Would be the same as:
class X { a; b;}

Models T3 Tutorial: Umple - October 2020 69

Mixset Definitions Internal to a Top-Level
Element
class X {
mixset Name2 {a;}
b;

}

Is the same as,
mixset Name2 class X {a;}
class X {b;}

The above works for attributes, associations, state
machines, states, etc.

Models T3 Tutorial: Umple - October 2020 70

Motivating Example:
Umple Model/Code for Basic Bank

Models T3 Tutorial: Umple - October 2020 71

Class Diagram of Basic Bank Example:
Generated from Umple

Models T3 Tutorial: Umple - October 2020 72

Adding Optional Multi-branch Feature

Models T3 Tutorial: Umple - October 2020 73

Example: Multi-branch Umple Model/Code

Models T3 Tutorial: Umple - October 2020 74

Alternative Approach (same system)

Models T3 Tutorial: Umple - October 2020 75

Constraints on Mixsets

require [Mixset1 or Mixset2];

Allowed operators
•and, or, xor
•not
•n..m of {…}

Parentheses allowed

opt X (means 0..1 of {X})

Models T3 Tutorial: Umple - October 2020 76

Case Study and Exercise 1:
Modifying the banking example
I will give you the text of the banking example and set up a

task for you to:

• Add the ability to have one or more account holders

• Add the ability to have one or more co-signers

Models T3 Tutorial: Umple - October 2020 77

Case Study and Exercise 2:
Dishwasher example
We will start with the Dishwasher example in UmpleOnline

We will use UmpleOnline’s Task capability to ask you to
split the Dishwasher example into two versions

• A cheap version that only does normal wash and not fast
wash

• A full version that does everything

Hint: Pull out the relevant state and transition for fast wash
and wrap it in a mixset

Models T3 Tutorial: Umple - October 2020 78

Case Study 3: Umple itself, written in Umple

We will look at:

• Code in Github
• Generated Architecture diagrams
• Generated Javadoc
• Sample master code
• Sample test output
• Sample code for generators (that replaced Jet)
• UmpleParser (that replaced Antlr

Models T3 Tutorial: Umple - October 2020 79

Wrapup:
Umple Philosophy 1-4
P1. Modeling is programming and vice versa

P2. An Umple programmer should never need to edit
generated code to accomplish any task.

P3. The Umple compiler can accept and generate code
that uses nothing but UML abstractions.

- The above is the inverse of the following

P4. A program without Umple features can be compiled by
an Umple compiler.

• e.g. input Java results in the same as output
Models T3 Tutorial: Umple - October 2020 80

Wrapup:
Umple Philosophy 5-8
P5. A programmer can incrementally add Umple features to

an existing program
• Umplification

P6. Umple extends the base language in a minimally
invasive and safe way.

P7. Umple features can be created and viewed
diagrammatically or textually

P8. Umple goes beyond UML

Models T3 Tutorial: Umple - October 2020 81

